
Intel Confidential — Do Not Forward

The Parallel Research Kernels, a tool for
parallel systems investigations - Part II
(https://github.com/ParRes/Kernels)
Rob Van der Wijngaart

Evangelos Georganas

*Parallel system=hardware system+network stack+OS+parallel
programming environment (ProgEnv: programming model + API
+ compiler + runtime)

ADVANCED MODELING AND SIMULATION SEMINAR SERIES

•  Background/Motivation

•  Particle-In-Cell kernel

•  Adaptive Mesh Refinement kernel

2

Agenda

Parallel Research Kernels (PRK)

Create test suite to study behavior or parallel systems
§  Cover broad range of patterns found in real parallel applications

§  Provide paper-and-pencil specification and generic reference
implementations

§  Ensure each kernel does some real work

§  Keep kernels simple functionally
- Easy porting to new runtimes/languages
- Easy to understand by different domain scientists
- Dominated by single feature, so convenient performance building block

§  Parameterize kernels (problem size, iterations, # cores etc.)

§  Include automatic verification test (analytical solution)

§  Make sure kernels can be load balanced (enough concurrency)

3

Motivation to add kernels
§ Initially PRK intended as architectural stress tests, not to
compare runtimes
- No insight into platform by studying fundamentally unbalanced load
- Our solution: make kernels trivially statically load balanced

§ However, exascale will require dynamic load balancing for
mature workloads + system/network fluctuations
- Balance load: ensure workers reach synchronization points at same time
- Balance work: assign same amount of computational work to workers

§ GOAL: Design and implement new kernels that:
- Require dynamic load balancing at all system scales (algorithmic source)
- Allow control of amount and frequency of workload adaptation
- Have data dependencies, so load-balancing is non-trivial; improving load-

balance usually increases communication

§ Usage: Research vehicle to stress dynamic load-balancing
capabilities of parallel runtimes

4

Algorithmic sources of dynamic
load imbalance

5

Type I: Evolving mismatch between two (often
distributed) data structures
§  Size of data structures constant
§  Dependency between data structures
§  No efficient static decomposition
Type II: Work changes intermittently (dis/appears)
§  Size of data structures changes
§  New work depends on subset of existing data structure
§  Equal distribution of new work among existing

resources breaks locality + decreases granularity

Type I: Simple Particle-In-Cell (PIC)

6

§  2D regular mesh with periodic boundaries

§  Fixed charges at mesh points. No assumptions
regarding charge distribution

§  N particles, each with its own charge. No
assumptions regarding particle distribution

§  T discrete time steps of duration dt

§  No interactions among moving particles

§  Particles only interact with four charges at
corners of containing cell

§  Compute total Coulomb force Ftotal on particle,
corresponding to acceleration a: a= Ftotal/m

§  Given velocity v, position x, and acceleration a of a
particle at time t, compute v and x at time t+dt:

§  x ← x + v dt + ½ a dt2

§  v ← v + a dt

+q0 +q1

+q2 +q3

Ftotal

F2

F0

F1

F3
 +qi

Initialization
§ Alternate charges: Columns with even index have charge +q, columns

with odd index have charge –q

§  Put particles on horizontal axis of symmetry of cells
§ Given the relative position xi of particle i, assign charge qi:

qi = h / (q (cosθ/d1
2 + cosφ/d2

2))

§ At time t+1 particle has shifted one cell, force reversed direction
§ At time t+2 particle has shifted two cells, velocity and force identical to

those at time t

+q

+q

-q

-q

xi

Ftotal

α

+q -q

-q +q

+qi

+q

+q

-q

-q

+q -q

-q +q h

+q

+q

-q

-q

-Ftotal

xi v -α

+q -q

-q +q

+qi

d1 d2

Ftotal

θ φ

xi

h

+q

+q

-q

-q

+qi

α

+q -q

-q +q

+q

+q

-q

-q

+q -q

-q +q

7

Verification requirements/challenges:
1.  Simple and short: don’t take more time or memory than actual

experiment.
2.  Tight enough to catch even minor implementation errors, but not

too tight (no bitwise accuracy)
3.  Not relying on statistics (inaccurate for short/small experiments)

Actual verification
§ Given initial coordinates (x0 , y0) and velocity (0, z*h), final
coordinates after T steps (modulo grid size) given by:
o xT = x0 + h T
o yT = y0 + z h T

§ Assign unique id to each particle. Checksums of particle ids
at and end of simulation must match.

§ Verification test catches even a single miscalculated force or
misplaced particle

Verification

8

§ Nonuniform initial particle distribution makes simulation
unbalanced; no static decomposition is efficient

§ Uneven particle cloud moves through domain, requiring
rebalancing
- Frequency of needed rebalancing controlled by cloud speed

Load imbalance

9

§ Example initial particle
distribution:
o Column i of grid cells contains p(i)
particles, where p(i) = A * ri

o Varying r makes distribution
arbitrarily unbalanced

o r =1 recovers uniform distribution

Example of 1D diffusion scheme

10

push push pull push pull pull push pull

Example of 1D diffusion scheme

11

Runtime-based load balancing with
Adaptive MPI (AMPI)

§ AMPI: Multiple ranks (user-level threads) per process,
typically one process per physical processor

§ AMPI uses Charm++ scheduler for execution of ranks
§ Approach: Over-decompose domain. AMPI migrates ranks
across processors for load balancing

§ Minimal changes to original static MPI implementation
(serialization routines for dynamic data structures)

12

Figure 4: Smaller subdomains may fit into cache and result in better performance

such as rocket simulation, burning solid fuel, sub-scaling for a certain part of the mesh, crack propagation,
particle flows all contribute to load imbalance. Centralized load balancing strategy built into an application
is impractical since each individual module is developed mostly independently by various developers. In
addition, embedding a load balancing strategy in the code complicates it, and programming e↵ort increases
significantly. The runtime system is uniquely positioned to deal with load imbalance. Figure 5 shows the
runtime system migrating a VP after detecting load imbalance. This domain may correspond to a weather
forecast model where there is a storm cell in the top-left quadrant, which requires more computation to
simulate. AMPI will then migrate VP 13 to balance the division of work across processors and improve
performance. Note that incorporating this sort of load balancing inside the application code may take a lot
of e↵ort and complicate the code.

Figure 5: AMPI migrates VPs across processors for load balancing

There are many di↵erent load balancing strategies built into Charm++ that can be selected by an
AMPI application developer. Among those, some may fit better for a particular application depending on
its characteristics. Moreover, one can write a new load balancer, best suited for an application, by the
simple API provided inside Charm++ infrastructure. Our approach is based on actual measurement of load
information at runtime, and on migrating computations from heavily loaded to lightly loaded processors.

For this approach to be e↵ective, we need the computation to be split into pieces many more in number
than available processors. This allows us to flexibly map and re-map these computational pieces to available
processors. This approach is usually called “multi-domain decomposition”.

Charm++, which we use as a runtime system layer for the work described here, simplifies our approach.
It embeds an elaborate performance tracing mechanism, a suite of plug-in load balancing strategies, in-
frastructure for defining and migrating computational load, and is interoperable with other programming

5

Migration of rank 13

Source: AMPI tutorial
Melania Trump

Example with Adaptive MPI

13

§ Over-decompose domain to 16 ranks (on 4 processes)

Example with Adaptive MPI

14

§ Load balancer decides how to place/migrate ranks to processes

P0 P1 P2 P3

Example with Adaptive MPI

15

P0 P1 P2 P3

§ Load balancer decides how to place/migrate ranks to processes

- 48 cores: 12K2 grid, 400K particles, 6K time steps; r= 0.999
- Increase number of cores and number of particles proportionally
- Load balancers: ampi: greedy, mpi-2d-LB: diffusion, mpi-2d: none

Distributed memory “weak” scaling

16

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.
For more complete information visit http://www.intel.com/performance

 8

 16

 32

 64

 128

 48 192 768 3072

Se
co

nd
s

Number of Cores

mpi-2d
ampi

mpi-2d-LB

ampi:
•  over-decomposition = 4
•  frequency = 1/500, 1/250

mpi-2d-LB:
•  quantum = 16 columns
•  frequency = 1/4

Why Adaptive Mesh Refinement?

17

Limitations of PIC kernel (Type I dynamic load imbalance)

§ Total amount of work constant; often work comes and goes in
chunks: in situ visualization, AMR, computational steering, etc.

§ Source of load imbalance is constant; no abrupt and/or
unpredictable variations in load

§ No analytical solution for almost all mesh sizes, initial particle
placements, time steps, particle and grid charges
§  relies on infinite precision or cancelling of rounding errors
§  can become chaotic

Fix: derive new kernel from Stencil PRK and AMR
workloads (Type II)
§ Has intermittent, abrupt introduction/removal of chunks of work

§ Final solution continuous function of initial solution

Stencil kernel, BG
with refinement grid

18

Stencil S(R)

R=2 Out += S(R) In

BG = Background Grid

19

Stencil S(R)

R=2 Out += S(R) In

Refinement issues:
•  How to ensure simple

analytical solution?
•  How should BG and

refinement interact?
•  How to avoid spending

much time/effort on
interpolation?

•  How to avoid complicated
path computation/bdry
intersection?

•  How to preserve
refinement history?

•  How to vary amount/
extent of refinement?

•  How to vary frequency/
duration of refinement?

BG = Background Grid

Stencil kernel, BG
with refinement grid

20

Stencil S(R)

R=2 Out += S(R) In

Refinement scenario:
•  Align BG and refinements
•  Interpolate initial values

on refinements from BG
•  Keep refinements in

place, but (de)activate
cyclically

•  Save state of all
refinements

•  Make refinements mesh
size power-of-two of BG

•  Define refinements in
terms of BG cells

•  Define refinements
period/duration in terms
of BG time steps

•  Prescribe # iterations on
refinements per BG
iteration

BG = Background Grid

g0

g1 g2

g3

Stencil kernel, BG
with refinement grids

Reference implementations

21

§ Application level dynamic load balancing (usually MPI)
o Possible to distribute work of new refinement without global

repartitioning?

§ Runtime orchestrated dynamic load balancing (e.g.
AMPI)
o Employs static partitioning with over-decomposition

MPI (dynamic) load balancing;
dumb and dumber—and dumbest

22

FINE_GRAIN: partition BG and refinements completely among all ranks

§  Split BG evenly among all ranks

§  When refinement appears, split evenly among all ranks

NO_TALK: minimize communication

§  Split BG evenly among all ranks

§  When refinement appears, split into pieces coinciding with BG partitioning and
assign to same rank

HIGH_WATER: partition BG plus one refinement together statically

§  Each rank receives exactly one subset of one of the grids at a time

NO_TALK_MULTI: same as NO_TALK, but over-decomposed

HIGH_WATER_MULTI: same as HIGH_WATER, but over-decomposed

NO_TALK_CORNER_CASE: shrink BG partitions towards refinement

AMNESIA: repartition each configuration from scratch (all-to-all)

S
tatic decom

position

Dynamic decomposition

FINE_GRAIN

23

•  Static decomposition
•  Perfect load balance
•  Good if BG work ≤

work on refinements,
may become very
fine-grain otherwise

•  Poor inter-grid-level
locality

 Color = rank

NO_TALK

24

•  Static decomposition
•  Perfect inter-grid-

level glocality
•  Perfect load balance

between refinements
•  Very poor load

balance during
refinements if work
on refinements
substantial

•  Fine if work on
refinements very
small

 Color = rank

HIGH_WATER

25

•  Static decomposition
•  Perfect load balance

during refinement
•  Better granularity

than FINE_GRAIN
•  Very poor load

balance between
refinements,
especially if BG work
≤ refinement work

•  No inter-grid-level
locality

 Color = rank

NO_TALK_MULTI

26

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

•  Poor load balance
during refinements if
work on refinements
substantial

•  Finer-grained than
NO_TALK

 Color = worker

HIGH_WATER_MULTI

27

•  Static decomposition
•  Possibility for decent

locality (depends on
assignment quality)

•  Poor load balance
during refinements

•  Perfect load balance
between refinements

•  Finer-grained than
HIGH_WATER

 Color = worker

NO_TALK_CORNER_CASE

28

•  Dynamic
decomposition

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

 Color = rank

NO_TALK_CORNER_CASE

29

•  Dynamic
decomposition

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

•  Better load balance
during refinements
than NO_TALK

•  More communication
to repartition BG

 Color = rank

NO_TALK_CORNER_CASE

30

 Color = rank

•  Dynamic
decomposition

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

•  Better load balance
during refinements
than NO_TALK

•  More communication
to repartition BG

NO_TALK_CORNER_CASE

31

 Color = rank

•  Dynamic
decomposition

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

•  Better load balance
during refinements
than NO_TALK

•  More communication
to repartition BG

NO_TALK_CORNER_CASE

32

 Color = rank

•  Dynamic
decomposition

•  Perfect inter-grid-
level locality

•  Perfect load balance
between refinements

•  Better load balance
during refinements
than NO_TALK

•  More communication
to repartition BG

Conclusions

33

§ PIC
o Useful for comparing user-level and runtime-orchestrated dynamic load

balancing of constant-work applications

§ AMR
o Tough case to parallelize using runtime-orchestrated dynamic load

balancing
o Is based on static partitioning with over-decomposition
o When over-decomposition mitigates dynamic load imbalance, static

mapping suffices

§ Overall
o AMR better proxy for localized system noise
o Does not benefit from runtime-orchestrated dynamic load balancing
Ø Local work increase cannot be absorbed locally unless workload already

unbalanced before disturbance

Intel Confidential — Do Not Forward

Backup

35

§ Strong scaling experiment on Edison:
- 2,999 x 2,999 grid, 600,000 particles (r = 0.999) and 6,000 time steps

Multiple nodes experiments

36

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.
For more complete information visit http://www.intel.com/performance

 2

 4

 8

 16

 32

 24 48 96 192 384

Se
co

nd
s

Number of Cores

mpi-2d
ampi

mpi-2d-LB

AMR Specification details

37

Parameters
§ T : total number of iterations (background grid)
§ R: radius of difference stencil
§ n: linear dimension of square background grid (n2 points, mesh

spacing is unity)
§  r: refinement level (mesh size of refined grid is 2−r)
§ k: linear dimension of refinement in terms of BG cells ((k∗2r +1)2

points in each refinement)
§ P : duration in terms of iterations on the BG of one full cycle of

activation of one refinement until that of the next (period)
§ D: duration in terms of iterations on the BG of activity on each

refinement; D ≤ P
§ d: number of iterations on a refinement per iteration on the BG

AMR Specification details

38

(Re-)initialization
§  In[0](x,y) = cxx+cyy
§  Ini[t]= φ (In[t]), with φ bi-linear interpolation (exact for linear

field)
Update
§  Increase In and Ini by constant after each stencil application
Verification
§  S is numerical equivalent of ∇ (exact for linear field):

∇(cxx+cyy + const) = cx+cy

§  Count number of iterations ηi on gi → Outi[T](x,y) ≡ ηi*(cx+cy)
§  Out[T](x,y) = T*(cx+cy)
§  In[t](x,y) = cxx+cyy + t, so: In[T](x,y) = (cx+cy)(n-1)/2 + T
§  Count number of updates νi on gi since last interpolation at time

θi→ Ini[T](x,y) ≡ (cx+cy)*k/2 + νi + f(corneri) + θi

corneri = coordinates of bottom left corner point of gi

Three example AMR scenarios

39

1.  n=1000, 10 workers, r=1, k=100, P=3, D=1, d=1.
Refinement has 1% of work of BG, lasts 1 iteration, then
waits for 2 iterations until next refinement. OK to add
refinement work to worker covering same part of BG (~10%
load imbalance)

2.  n=1000, 100 workers, r=1, k=100, P=3, D=1, d=1. Not OK
to add refinement work to worker covering same part of BG
(100% load imbalance). Rapid (dis)appearance requires
frequent load balancing

3.  n=1000, 100 workers, r=4, k=6, P=30, D = 10, d = 5.
Refinements ≈number of grid points as in scenario 1, but
cover much smaller fraction of the BG; activated 10x slower
than in that case, persist 50x longer, so automatic load
balancing may respond effectively to changes in load

